THERE ARE MANY NORMAL ULTRAFILTRES CORRESPONDING TO A SUPERCOMPACT CARDINAL*

BY M. MAGIDOR

ABSTRACT

It is proved that if κ is supercompact, there are at least $(2^{|P_{\kappa}(\beta)|})^+$ normal ultrafilters over $P_{\kappa}(\beta)$ and if V=H.O.D. exactly $2^{2|P_{\kappa}(\beta)|}$ normal ultrafilters.

 $P_{\kappa}(\beta)$ is the set of all non-empty subsets of β of cardinality less than κ . Its cardinality is $WP(\kappa, \beta)$. \bar{P} is the order type of P as a set of ordinals.

The notion of supercompact was defined by Solovay ([3]). The basic facts about it which will appear in [3] are reproduced here for the reader's convenience (up to Lemma 8 and also Lemma 12).

DEFINITION 1. An ultrafilter U over $P_{\kappa}(\beta)$ is normal (n.u.f.) if:

- a) U is κ complete
- b) For all $\gamma < \beta$ $\{P \mid P \in P_{\kappa}(\beta) \mid \gamma \in P\} \in U$
- c) For any function $f: P_{\kappa}(\beta) \to \beta$ such that $f(P) \in P$ for all P, there is $\gamma < \beta$ satisfying $\{P \mid f(P) = \gamma\} \in U$.

DEFINITION 2. κ is β supercompact if there is a n.u.f. over $P_{\kappa}(\beta)$.

 κ is supercompact if κ is β supercompact for all β .

 κ is terminated in β if β is the first cardinal such that κ is not β supercompact If U is a n.u.f., then if we take the ultrapower $[V^{P\kappa(\beta)}/U, \epsilon/U]$ we get a well founded model of set theory.

Received April 5 1970 and in revised form August 18, 1970

^{*} This is a part of the author's Ph.D. thesis prepared under the supervision of Professor Azriel Levy for whose help the author is grateful.

In 1966-67, Solovay proved Theorem 1 for the case $\beta = \kappa$ without the condition of extendability. The same result, under a somewhat weaker assumption was proved by Namba in 1967-68. As noted by Solovay, his proof can be adapted to a general β (under weaker assumptions; if $|P_{\kappa}(\beta)| = \beta$ it is only needed that κ is 2^{β} -supercompact). Solovay's result will be published in [3].

Let V_U be its transitive isomorph and let * be the canonical elementary embedding of V into V_U . (We shall identify $V^{P\kappa(\beta)}/U$ and V_U where no confusion arises). The importance of being normal follows from:

LEMMA 3. If U is a n.u.f. over $P_{\kappa}(\beta)$ then every subset of V_U of cardinality $\leq \beta$ is a member of V_U .

Note that by the method of proof of Lemma 11, we could improve Lemma 3 by substituting "every set of cardinality $\leq WP(\kappa, \beta)$ ".

DEFINITION 4. A set $A \subseteq P_{\kappa}(\beta)$ is called closed if A is closed under non-empty union of less than κ of its elements.

A is called unbounded if for any $\alpha < \beta$ there is $P \in A$ such that $\alpha \in P$.

LEMMA 5. Let $\kappa \leq \beta$ and U a n.u.f. over $P_{\kappa}(\beta)$, then every closed unbounded set A is in U.

PROOF. Suppose that this is not the case. Define for every $P \in P_{\kappa}(\beta)$

$$f(P) = \bigcup \{Q \mid Q \subseteq P, Q \in A\}.$$

Note that $f(P) \subseteq P$ for all P and

$$f(P) = P \text{ iff } P \in A.$$

Let $B = P_{\kappa}(\beta) - A$. $B \in U$ since $A \notin U$.

Define

$$g(P) = \bigcap \{ \alpha \mid \alpha \in P - f(P) \}$$
 for $P \in B$.
 $g(P) = \bigcap \{ \alpha \mid \alpha \in P \}$ for $P \in A$.

Clearly, $g(P) \in P$ for every $P \in P_{\kappa}(\beta)$, therefore there is a $\gamma < \beta$ such that $\{P \mid g(P) = \gamma\} \in U$. Then, since $B \in U$, we have $B' = \{P \mid g(P) = \gamma, P \in B\} \in U$.

Let Q be an element of A such that $\gamma \in Q$. By (b) of Definition 1 and κ completeness of U there is $Q' \in B'$ such that $Q \subseteq Q'$. But $Q \subseteq f(Q')$. So $\gamma \in f(Q')$, and therefore $g(Q') \neq \gamma$. This contradicts $Q' \in B'$.

COROLLARY 6. If U is a n.u.f. over $P_{\kappa}(\beta)$ then $\kappa \in U$. (Note that $\kappa \subseteq P_{\kappa}(\beta)$).

PROOF. κ is closed and unbounded in $P_{\kappa}(\kappa)$.

It follows that U induces a unique κ complete u.f. U' over κ which is normal. (The normality of U' follows immediately from the normality of U).

DEFINITION 7. Let $A \subseteq P_{\kappa}(\beta)$ $\gamma \leq \beta$ then $[A]_{\gamma}$ (the restriction of A to γ) is $\{P \cap \gamma \mid P \in A\}$. If $U \subseteq P(P_{\kappa}(\beta))$ then $U \mid \gamma$. (the restriction of U to γ) is $\{[A]_{\gamma} \mid A \in U\}$.

LEMMA 8. If U is a n.u.f. over $P_{\kappa}(\beta)$, then $U \mid \gamma$ is a n.u.f. over $P_{\kappa}(\gamma)$ and $\delta \leq \gamma \rightarrow (U \mid \alpha) \mid \delta = U \mid \delta$.

DEFINITION 9. A n.u.f. U over $P_{\kappa}(\beta)$ is extendible if there are unbounded α 's such that U is the restriction of a n.u.f. over $P_{\kappa}(\alpha)$. (By Lemma 8 it follows that U is extendible iff for all $\alpha \geq \beta$ there is a n.u.f. U' over $P_{\kappa}(\beta)$ s.t. $U = U' | \beta$).

DEFINITION 10. A set a is stable of degree β if there is a function $f: P_{\kappa}(\beta) \to V$ s.t. for all n.u.f.'s U over $P_{\kappa}(\beta)$, $\lceil f \rceil$ represents a in $V^{P_{\kappa}(\beta)}/U$.

LEMMA 11. If a is hereditarily of cardinality $\leq WP(\kappa, \beta)$ then a is stable of degree β .

PROOF. By induction on the rank of a. a is of cardinality $\leq WP(\kappa, \beta)$, let r map $P_{\kappa}(\beta)$ onto a. for each member of a, r(P), choose by the induction hypothesis a function f_P s.t. $\lceil f_P \rceil$ represents r(P) in $V^{P_{\kappa}(\beta)}/U$ for all n.u.f. U.

Define O by $O(P) = |P \cap \kappa|$. By normality, it follows easily that [O] represents κ in $V^{P_{\kappa}(\beta)}/U$ for all n.u.f. U.

Define g by $g(Q) = P_{0(a)}(Q)$.

FACT. g is "normal" in the sense that if s is a function s.t. $s(P) \in g(P)$ for all P. Then, if U is a n.u.f. over $P_{\kappa}(\beta)$, there is a Q s.t. $\{P \mid s(P) = Q\} \in U$.

PROOF OF THE FACT. s(P) is of cardinality < O(P). Using the fact that [O] represents κ , and the κ completeness of U, we get $\mu < \kappa$ s.t. $C = \{P \mid \overline{s(P)} = \mu\} \in U$. Define j_{α} for $\alpha < \mu$ by

 $j_{\alpha}(P)$ = The α th member of s(P) if $P \in C$

 $j_a(P)$ = The first member of P if $P \notin C$

for each α $j_{\alpha}(P) \in P$ for all $P(S(P) \subseteq P)$ so by condition (c) of Definition 1 we have a γ_{α} s.t. $C_{\alpha} = \{P \mid j_{\alpha}(P) = \gamma_{\alpha}\} \in U$. Let $Q = \{\gamma_{\alpha} \mid \alpha < \mu\}$.

It is easily seen that $D = \{P \mid s(P) = Q\} \supseteq C \cap \bigcap_{\alpha < \mu} C_{\alpha}$.

Hence, $D \in U$, which proves the fact.

Now, define h by $h(P) = \{f_Q(P) \mid Q \in g(P)\}.$

Let U be n.u.f. over $P_{\kappa}(\beta)$. We prove that a = [h] in V_U .

Let $Q \in P_{\kappa}(\beta)$, and q = |Q|, by condition (b) of Definition 1 follows that $\{P \mid Q \subseteq P; |P \cap \kappa| > q\} \in U$. But $Q \subseteq P \mid P \cap \kappa| > q$ implies $Q \in P_{0(P)}(P)$, hence $\{P \mid Q \in g(P)\} \in U$.

Therefore, $\{P \mid f_Q(P) \in h(P)\} \supseteq \{P \mid Q \in g(P)\}$, is a member of U.

Each element of a is r(P) for some P, so we have $a \subseteq [h]$. On the other hand, let t be a function s.t. $B = \{P \mid t(P) \in h(P)\} \in U$. Then define

$$s(P) =$$
The first Q s.t. $t(P) = f_Q(P)$ for $P \in B$,
 $s(P) = 0$ for $P \notin B$.

(We use some fixed well-ordering of $P_{\kappa}(\beta)$).

For all P we have $s(P) \in g(P)$, so by 'normality' of g, s is almost constant. There is Q s.t. $\{P \mid s(P) = Q\} \in U$, so $\{P \mid s(P) = Q, P \in B\} \in U$. Hence, $\{P \mid t(P) = f_O(P)\} \in U$ which means $[t] = [f_Q]$. Thus, we proved $[h] \subseteq a$.

Denote h of Lemma 11 by f_a^{β} . Let $\beta \leq \gamma$. It can be easily seen that we can choose f_a^{γ} and f_a^{β} (by choosing the r of Lemma 11 for β and γ consistently) s.t. $f_a^{\gamma}(P) = f_a^{\beta}(P \cap \beta)$.

Note that $f_{\sigma}^{\beta}(P) < \kappa$ where $\alpha \leq \beta$.

LEMMA 12. Let U be a n.u.f. over $P_{\kappa}(\beta)$, $\gamma \leq \beta$ then $V_{U|\gamma}$ can be elementarily embedded in V_U in such a way that sets, hereditarily of cardinality $\leq WP(\kappa, \gamma)$ are preserved.

PROOF. We embed $V^{P_{\kappa}(\beta)}/U \mid \gamma$ in $V^{P_{\kappa}(\beta)}/U$ by i([f]) = [f'] where f' is given by $f'(P) = f(P \cap \gamma)$, for all $P \in P_{\kappa}(\beta)$. i is well defined because if

$$A = \{P | f(P) = f_1(P)\} \in U | \gamma$$

then there is $B \in U$ such that $A = [B]_{\gamma}$ but $B \subseteq \{P \mid f'(P) = f'_1(P)\} \rightarrow [f'] = [f'_1]$.

i is elementary embedding because

$$\begin{split} V^{P_{\kappa}(\gamma)}/U \, \big| \, \gamma & \models l(\llbracket f_1 \rrbracket \cdots \llbracket f_n \rrbracket) \text{ iff } \\ A &= \{P \, \big| \, V \, \models l(f_1(P), \cdots f_n(P))\} \in U \, \big| \, \gamma. \end{split}$$

 $A \in U \mid \gamma$ implies that there is $B \in U$ such that $A = [B]_{\gamma}$. So we have

$$B \subseteq \{P \mid V \models l(f_1(P), \cdots f_n(P))\} = C,$$

then $C \in U$, that is to say

$$V^{\mathbf{P}_{\kappa}(\beta)}/U \models l([f_1'], \cdots [f_n']).$$

The note after Lemma 11 actually proves that all sets, hereditarily of cardinality $\leq WP(\kappa, \gamma)$ are preserved by i.

DEFINITION 13. α is good if α is a strong limit cardinal $(\beta < \alpha \rightarrow 2^{\beta} < \alpha)$ and if $cf(\alpha) \ge \kappa$. If α is good then $|P_{\kappa}(\beta)| = \alpha$.

Let κ_U^* be the image of κ under * in V_U . From the note in the proof of Lemma 11, it follows that $\beta < \kappa^*$.

LEMMA 14. Let U, U' be n.u.f. over $P_{\kappa}(\beta)$. Suppose that $|P_{\kappa}(\beta)| = \beta$. If $U' \in V_U$ then $\kappa_{U'}^* < \kappa_U^*$.

PROOF. Since κ is inaccessible, $V_U \models \kappa_U^*$ is inaccessible. All the functions $f: P_{\kappa}(\beta) \to \kappa$ are in V_U (they are hereditarily of cardinality β). But in V_U , $V_U \models \kappa_U^* > \beta \ge \kappa$, therefore in V_U the set $\kappa_U^{P_{\kappa}(\beta)}$ has cardinality less than κ_U^* .

Since $\kappa_U^{*'} = \{ [f] | f \in \kappa^{P_{\kappa}(\kappa)} \}$, and $U' \in V_U$ the map $f \to [f]$ is in V_U , so in $V_{U'} | \kappa_{U'}^* | < |\kappa_U^*| = \kappa_{U'}^* < \kappa_U^*$.

Lemma 15. If α is good and κ is α supercompact then there is a n.u.f. ,U, over $P_{\kappa}(\alpha)$ such that in V_U κ is terminated in α .

PROOF. Since α is a strong limit cardinal, for any n.u.f. U over $P_{\kappa}(\alpha)$, we have $V_U \models \kappa$ is β supercompact for all $\beta < \alpha$. (A n.u.f. over $P_{\kappa}(\beta)$ is a set hereditarily of cardinality $< \alpha$).

Choose U over $P_{\kappa}(\alpha)$ s.t. κ_{U}^{*} is minimal, $|P_{\kappa}(\alpha)| = \alpha$, therefore $P(P_{\kappa}(\alpha)) \in V_{U}$. (For any subset of $P_{\kappa}(\alpha)$ is hereditarily of cardinality $\leq \alpha$).

If we have $V_U \models \kappa$ is α supercompact, then $V_U \models$ there is a n.u.f. ofer $P_{\kappa}(\alpha)$, but if U' is a n.u.f. over $P_{\kappa}(\alpha)$ in V_U , it is a n.u.f. in V. $(P(P_{\kappa}(\alpha) \in V_U!)$

Since $U' \in V_U$, by Lemma 14 we get $\kappa_{U'}^* < \kappa_U^*$ which contradicts the minimality of κ_U^* .

DEFINITION 16. Let κ be terminated in β . α reflects κ if the following holds: For all $\gamma < \alpha$. If U is a n.u.f. over $P_{\kappa}(\gamma)$ and for all $\gamma \leq \delta < \alpha$, U is a restriction of a n.u.f. over $P_{\kappa}(\delta)$, then for all $\varepsilon < \beta$, U is the restriction of a n.u.f. over $P_{\kappa}(\varepsilon)$. If κ is supercompact, then α reflects κ if for all $\gamma < \alpha$, if U is n.u.f. over $P_{\kappa}(\gamma)$ and for all $\gamma \leq \delta < \alpha$ U is a restriction of a n.u.f., over $P_{\kappa}(\delta)$, then U is extendible. The usual reflection principle ([1]) shows that if κ is supercompact, we have unbounded numbers of α 's which are good and reflect κ .

Suppose that α is good and reflects κ , U a n.u.f. over $P_{\kappa}(\alpha)$ such that $V_{U} \models \kappa$ is terminated in α . Then for $\gamma < \alpha$:

 $V \models \gamma$ is good and reflects κ iff $V_U \models \gamma$ is good and reflects κ .

The proof is straightforward by noting that all subsets hereditarily of cardinality $\leq \alpha$ are in V_U .

Under the same assumptions if α is the γ th good cardinal which reflects κ we get by the same consideration (note $\gamma \leq \alpha$).

 $V_{U} \models \kappa$ is finished in the γ th cardinal which is good and reflects κ .

THEOREM 1. If κ is supercompact, there are all least $(2^{WP(\kappa,\beta)})^+$ n.u.f.'s over $P_{\kappa}(\beta)$ which are extendible.

PROOF. We shall map $(2^{WP(\kappa,\beta)})^+$ into the set of extendible n.u.f.'s in a one-to-one manner.

Let $\gamma < (2^{WP(\kappa,\beta)})^+$ and let α_{γ} be the γ th good cardinal $\geq \beta$ which reflects κ . Let U_{γ} be a n.u.f. s.t. in $V_{U_{\gamma}} \models \kappa$ is terminated in α_{γ} . (U_{γ} exists by Lemma 15).

 $V_{U_{\gamma}} \models \kappa$ is terminated in γ th cardinal which is good, $\geqq \beta$, and reflects κ . Hence:

 $V_{U_{\kappa}} \models \text{there is a well-ordering } X \text{ of } P(P_{\kappa}(\beta)) \text{ s.t. if } \gamma_X \text{ is the order type of } X, \kappa \text{ is terminated in } \alpha_{\gamma_{\kappa}}.$

By Lemma 12 we have:

(I). $V_{U|\beta} \models$ There is a well-ordering X of $P(P_{\kappa}(\beta))$ s.t. γ_X is the order type of X, κ is terminated in α_{γ_X} . (Note that β and κ are preserved by the elementary embedding of $V_{U_{\kappa}|\beta}$ into $V_{U_{\kappa}}$).

Let $\langle (P_{\kappa}(\beta)), \alpha \rangle$ be that well-ordering in $V_{U \mid \beta}$.

It must be of order type γ because the elementary embedding of $V_{U,|\beta}$ into $V_{U,\gamma}$ preserves α . (It preserves any element of $P(P_{\kappa}(\beta))$, which means that it preserves pairs of elements of $P(P_{\kappa}(\beta))$, and any set of pairs of elements of $P(P_{\kappa}(\beta))$).

Clearly the mapping $\gamma \to U_{\gamma} | \beta$, is one-to-one because for different α 's we get different well-ordering fulfilling the statement I.

 $U_{\gamma} \mid \beta$ is extendible because it is a restriction of a n.u.f. over $P_{\kappa}(\alpha_{\gamma})$, and α_{γ} reflects κ , which means that $U_{\gamma} \mid \beta$ is extendible to any ordinal $\langle \alpha_{\gamma} \Rightarrow U_{\gamma} \mid \beta$ is extendible. Q.E.D.

In Theorem 2 we give an exact figure for the cardinality of n.u.f.'s over $P_{\kappa}(\beta)$. However, we use an assumption V = H.O.D. where V = H.O.D. is a shorthand for "every set is ordinal definable", ([2]), which is by no means known to be consistent with the existence of supercompact cardinal.

THEOREM 2. If V = H.O.D. and κ is supercompact, then there are $2^{2^{WP(\kappa,\beta)}}$ extendible n.u.f.'s over $P_{\kappa}(\beta)$.

PROOF. Define α to be *super-good* if $\alpha = |R(\alpha)|$, every set in $R(\alpha)$ is ordinal definable in $R(\alpha)$ for some $\beta < \alpha$, and $cf(\alpha) \ge \kappa$.

If in $R(\beta)$ every set is ordinal definable in some $R(\beta)$ ($\beta < \alpha$) then the canonical well-ordering of $R(\beta)$ described in ([2]) is the restriction of the canonical well-ordering of V.

If α is super-good, U a *n.u.f.* over $P_{\kappa}(\alpha)$ then $R(\alpha) \subseteq V_U$ (because $R(\alpha)$ is hereditarily of cardinality $\leq \alpha$), and $V_U \models \alpha$ is super-good.

We map $2^{2^{WP(\kappa,\beta)}}$ to the set of n.u.f.'s over $P_{\kappa}(\beta)$ which are extendible.

Let $\gamma < 2^{2^{WP(-\beta)}}$ and α_{γ} the γ -th super-good cardinal which reflects κ and is $\geq \beta$.

Let U_{γ} be a n.u.f. over $P_{\kappa}(\alpha_{\gamma})$ s.t. $V_{U} \models \kappa$ is terminated in α_{γ} . Since $(\gamma < 2^{2^{WP(\cdots\beta)}})$ we have a canonical well-ordering of $P(P(P_{\kappa}(\beta)))$ of order types $2^{2^{WP(\cdots\beta)}}$. This well-ordering is definable in $R(\alpha_{\gamma})$, so it is definable in $V_{U_{\gamma}}$. Denote it by α . Then γ is the order type of an initial segment of α fixed by $\alpha \in P(P(P_{\kappa}(\beta)))$.

 $a \in V_{U|\beta}$ because a is definable from β and κ in V_U and therefore it is the image of some element of $V_{U\gamma|\beta}$ by i of Lemma 12.

But $a \subseteq P(P_{\kappa}(\beta))$ and each of the elements of $P(P_{\kappa}(\beta))$ is preserved by i, so $i^{-1}(a) = a$.

For different γ 's we get different a's because an initial segment of order type α is fixed in the canonical well-ordering of $P(P(P_{\kappa}(\beta)))$ by a different subset of $P(P_{\kappa}(\beta))$.

Each of the a's is definable in $V_{U,\beta}$ from κ and β by the same formula, which implies by the stability of κ and β of degree β that:

$$\gamma \neq \gamma' \Rightarrow U_{\gamma} | \beta \neq U_{\gamma'} | \beta.$$

 $U_{\gamma} | \beta$ is extendible because it is extendible up to α_{γ} and α_{γ} reflects κ . Q.E.D.

By Corollary 6, we get that κ as a measurable cardinal has at least $(2^{\kappa})^+$ normal ultrafilters and if V = H.O.D., exactly $2^{2^{\kappa}}$ n.u.f.'s.

REFERENCES

- 1. Montague-Vaught, Natural models of set theories, Fund. Math. 47 (1959), 219-242.
- 2. Myhill-D. Scott, Ordinal definability, to appear in the Proceedings of the U.C.L.A. Seminar of Set Theory, 1967.
- 3. W. N. Reinhardt and R. Solovay, Strong axioms of infinity and elementary embeddings, (to appear).

THE HEBREW UNIVERSITY OF JERUSALEM